
Package: mvPot (via r-universe)
September 7, 2024

Type Package

Title Multivariate Peaks-over-Threshold Modelling for Spatial Extreme
Events

Version 0.1.5

Date 2020-01-09

Description Tools for high-dimensional peaks-over-threshold inference
and simulation of spatial extremal processes. Key references
include de Fondeville and Davison (2018)
<doi:10.1093/biomet/asy026>, Thibaud and Opitz (2015)
<doi:10.1093/biomet/asv045>, Wadsworth and Tawn
<doi:10.1093/biomet/ast042>.

License GPL-2

Imports MASS, evd, numbers, gmp

RoxygenNote 7.0.2

Encoding UTF-8

URL http://github.com/r-fndv/mvPot

Repository https://r-fndv.r-universe.dev

RemoteUrl https://github.com/r-fndv/mvpot

RemoteRef HEAD

RemoteSha 56e55778a797117fc36e1897033913380b54212c

Contents
mvPot-package . 2
censoredLikelihoodBR . 4
censoredLikelihoodXS . 6
genVecQMC . 9
mvtNormQuasiMonteCarlo . 10
mvTProbQuasiMonteCarlo . 11
rExtremalStudentParetoProcess . 13
scoreEstimation . 14

1

https://doi.org/10.1093/biomet/asy026
https://doi.org/10.1093/biomet/asv045
https://doi.org/10.1093/biomet/ast042
http://github.com/r-fndv/mvPot

2 mvPot-package

simulBrownResnick . 16
simulPareto . 17
spectralLikelihood . 18

Index 20

mvPot-package Multivariate Peaks-over-Threshold Modelling for Extreme Events
Analysis

Description

The mvPot package provides functions to perform high-dimensional peaks-over-threshold inference
of spatial processes such as the Brown–Resnick. Parallel implementation for censored likelihood
allows up to 500 locations, whereas the gradient score can handle thousands of locations. The
package also includes simulations algorithms for the Brown-Resnick max-stable process as well as
its associated Pareto process. A tutorial describing a complete case study of Red Sea temperature
anomalies extremes can be found at http://github.com/r-fndv/mvPot_tutorial.

Details

The mvPot package provides functions to perform high-dimensional peaks-over-threshold inference
of spatial processes such as the Brown–Resnick.

spectralLikelihood relies on the spectral likelihood as developed by Engelke et al. (2015). This
methods is fast to compute, however it is not robust with regard to non-extreme components.

censoredLikelihoodBR (Wadsworth and Tawn, 2013) is a likelihood function for exceedances
with at least one component exceeding a threshold and where low components, i.e., components
under their threshold,. This approach is robust and performs best but requires heavy computations.
The implementation in this package makes use of quasi-Monte Carlo estimation and thus can han-
dle 100 locations in a reasonable time and up to 500 when parallelized. The analog function for
extremal Student processes is censoredLikelihoodXS.

scoreEstimation is a faster alternative to the censoredLikelihood, which is more robust than
spectralLikelihood. This method can also be used with any kind of differentiable risk functional
(Fondeville and Davison, 2016). Here the algorithm is limited only by matrix inversion and thus
thousands of locations can be used.

simulBrownResnick is an exact algorithm for simulation of Brown-Resnick max-stable processes
as described in Dombry et al. (2015).

simulPareto allows for simulation of Pareto processes associated to log-Gaussian random func-
tions.

rExtremalStudentParetoProcess allows for simulation of Pareto processes associated to Student
random functions, using the accept-reject algorithm of Thibaud and Opitz (2015).

mvtNormQuasiMonteCarlo and mvTProbQuasiMonteCarlo are Cpp functions to evaluate the distri-
bution function of Gaussian and t integrals, using a quasi-Monte Carlo algorithm based on randomly
shifted lattice rules.

http://github.com/r-fndv/mvPot_tutorial

mvPot-package 3

Author(s)

Raphael de Fondeville

Maintainer: Raphael de Fondeville <raphael.de-fondeville@epfl.ch>

References

de Fondeville, R. and Davison A. (2018). High-dimensional peaks-over-threshold inference. Biometrika,
105(3), 575-592.

Engelke, S. et al. (2015). Estimation of Huesler-Reiss Distributions and Brown-Resnick Processes.
Journal of the Royal Statistical Society: Series B, 77(1), 239-265

Wadsworth, J.L. and Tawn, J.A. (2013). Efficient inference for spatial extreme value processes
associated to log-Gaussian random functions. Biometrika, 101(1), 1-15.

Thibaud, E. and T. Opitz (2015). Efficient inference and simulation for elliptical Pareto processes.
Biometrika, 102(4), 855-870.

Dombry, C., Engelke, S. and Oesting, M. (2016). Exact simulation of max-stable processes.
Biometrika, 103(2), 303-317.

Genz, A. and Bretz, F. (2009). Computations of Multivariate Normal and t Probabilities, volume
105. Springer: Dordrecht.

Genz, A. (2013). QSILATMVNV http://www.math.wsu.edu/faculty/genz/software/software.
html

Examples

#Define semi-variogram function
vario <- function(h, alpha = 1.5){

norm(h,type = "2")^alpha
}

#Define locations
loc <- expand.grid(1:4, 1:4)

#Simulate data
obs <- simulPareto(1000, loc, vario)

#Evaluate risk functional
sums <- sapply(obs, sum)

#Define weighting function
weigthFun <- function(x, u){
x * (1 - exp(-(sum(x) / u - 1)))

}

#Define partial derivative of weighting function
dWeigthFun <- function(x, u){
(1 - exp(-(sum(x) / u - 1))) + (x / u) * exp(- (sum(x) / u - 1))

}

http://www.math.wsu.edu/faculty/genz/software/software.html
http://www.math.wsu.edu/faculty/genz/software/software.html

4 censoredLikelihoodBR

#Select exceedances
threshold <- quantile(sums, 0.9)
exceedances <- obs[sums > threshold]

#Define objective function
objectiveFunction = function(parameter, exceedances, loc, vario, weigthFun, dWeigthFun, threshold){

#Define semi-variogram for the corresponding parameters
varioModel <- function(h){
vario(h, parameter[1])
}

#Compute score
scoreEstimation(exceedances, loc, varioModel, weigthFun, dWeigthFun, u = threshold)

}

#Estimate the parameter by optimization of the objective function
est <- optim(par = c(1.5),

fn = objectiveFunction,
exceedances = exceedances,
loc = loc,
vario = vario,
weigthFun = weigthFun,
dWeigthFun = dWeigthFun,
threshold = threshold,
control = list(maxit = 100, trace = 1),
lower = c(0.01),
upper = c(1.99),
method = "L-BFGS-B")

censoredLikelihoodBR Censored log-likelihood function for the Brown–Resnick model.

Description

Compute the peaks-over-threshold censored negative log-likelihood function for the Brown–Resnick
model.

Usage

censoredLikelihoodBR(
obs,
loc,
vario,
u,
p = 499L,
vec = NULL,
nCores = 1L,
cl = NULL,

censoredLikelihoodBR 5

likelihood = "mgp",
ntot = NULL,
...

)

censoredLikelihood(
obs,
loc,
vario,
u,
p = 499L,
vec = NULL,
nCores = 1L,
cl = NULL

)

Arguments

obs List of vectors for which at least one component exceeds a high threshold.

loc Matrix of coordinates as given by expand.grid().

vario Semi-variogram function taking a vector of coordinates as input.

u Vector of threshold under which to censor components.

p Number of samples used for quasi-Monte Carlo estimation. Must be a prime
number.

vec Generating vector for the quasi-Monte Carlo procedure. For a given prime p and
dimension, can be computed using genVecQMC.

nCores Number of cores used for the computation

cl Cluster instance as created by makeCluster of the parallel package.

likelihood vector of strings specifying the contribution. Either "mgp" for multivariate gen-
eralized Pareto, "poisson" for a Poisson contribution for the observations falling
below or "binom" for a binomial contribution.

ntot integer number of observations below and above the threshold, to be used with
Poisson or binomial likelihood

... Additional arguments passed to Cpp routine.

Details

The function computes the censored negative log-likelihood function based on the representation
developed by Wadsworth et al. (2014) and Engelke et al. (2015). Margins must have been stan-
dardized first, for instance to the unit Frechet scale.

Value

Negative censored log-likelihood for the set of observations obs and semi-variogram vario with
attributes exponentMeasure for all of the likelihood type selected, in the order "mgp", "poisson",
"binom".

6 censoredLikelihoodXS

Author(s)

Raphael de Fondeville

References

Wadsworth, J. L. and J. A. Tawn (2014). Efficient inference for spatial extreme value processes
associated to log-Gaussian random functions. Biometrika, 101(1), 1-15.

Asadi, P., Davison A. C. and S. Engelke (2015). Extremes on River Networks. Annals of Applied
Statistics, 9(4), 2023-2050.

Examples

#Define semi-variogram function
vario <- function(h){

0.5 * norm(h, type = "2")^1.5
}

#Define locations
loc <- expand.grid(1:4, 1:4)

#Simulate data
obs <- simulPareto(1000, loc, vario)

#Evaluate risk functional
maxima <- sapply(obs, max)
thres <- quantile(maxima, 0.9)

#Select exceedances
exceedances <- obs[maxima > thres]

#Compute generating vector
p <- 499
latticeRule <- genVecQMC(p, (nrow(loc) - 1))
primeP <- latticeRule$primeP
vec <- latticeRule$genVec

#Compute log-likelihood function
censoredLikelihoodBR(obs = exceedances, loc = loc, vario = vario,
u = thres, p = primeP, vec = vec, ntot = 1000)

censoredLikelihoodXS Censored log-likelihood function of the extremal Student model

Description

Compute the peaks-over-threshold censored negative log-likelihood function for the extremal Stu-
dent model.

censoredLikelihoodXS 7

Usage

censoredLikelihoodXS(
obs,
loc,
corrFun,
nu,
u,
p = 499L,
vec = NULL,
nCores = 1L,
cl = NULL,
likelihood = "mgp",
ntot = NULL,
std = FALSE,
...

)

Arguments

obs List of vectors for which at least one component exceeds a high threshold.

loc Matrix of coordinates as given by expand.grid().

corrFun correlation function taking a vector of coordinates as input.

nu degrees of freedom of the Student process

u Vector of thresholds under which to censor components.

p Number of samples used for quasi-Monte Carlo estimation. Must be a prime
number.

vec Generating vector for the quasi-Monte Carlo procedure. For a given p and di-
mensionality, can be computed using genVecQMC.

nCores Number of cores used for the computation

cl Cluster instance as created by makeCluster of the parallel package.

likelihood vector of string specifying the contribution. Either "mgp" for multivariate gener-
alized Pareto, "poisson" for a Poisson contribution for the observations falling
below or "binom" for a binomial contribution.

ntot integer number of observations below and above the threshold, to be used with
Poisson or binomial likelihood

std logical; if std = TRUE, consider obs/u for scalar u and exceedances over 1 rather
than obs> u for potentially vector u. This affects the value of the log-likelihood
function. Default to FALSE.

... Additional arguments passed to Cpp routine.

Details

The function computes the censored log-likelihood function based on the representation developed
by Ribatet (2013); see also Thibaud and Opitz (2015). Margins must have been standardized, for
instance to unit Frechet.

8 censoredLikelihoodXS

Value

Negative censored log-likelihood function for the set of observations obs and correlation function
corrFun, with attributes exponentMeasure for all of the likelihood type selected, in the order
"mgp", "poisson", "binom"..

Author(s)

Leo Belzile

References

Thibaud, E. and T. Opitz (2015). Efficient inference and simulation for elliptical Pareto processes.
Biometrika, 102(4), 855-870.

Ribatet, M. (2013). Spatial extremes: max-stable processes at work. JSFS, 154(2), 156-177.

Examples

#Define correlation function
corrFun <- function(h, alpha = 1, lambda = 1){

exp(-norm(h, type = "2")^alpha/lambda)
}

#Define locations
loc <- expand.grid(1:4, 1:4)

#Compute generating vector
p <- 499L
latticeRule <- genVecQMC(p, (nrow(loc) - 1))
primeP <- latticeRule$primeP
vec <- latticeRule$genVec

#Simulate data
Sigma <- exp(-as.matrix(dist(loc))^0.8)
obs <- rExtremalStudentParetoProcess(n = 1000, nu = 5, Sigma = Sigma)
obs <- split(obs, row(obs))

#Evaluate risk functional
maxima <- sapply(obs, max)
thresh <- quantile(maxima, 0.9)

#Select exceedances
exceedances <- obs[maxima > thresh]

#Compute log-likelihood function
eval <- censoredLikelihoodXS(exceedances, loc, corrFun, nu = 5, u = thresh, primeP, vec)

genVecQMC 9

genVecQMC Generating vectors for lattice rules

Description

Compute an efficient generating vector for quasi-Monte Carlo estimation.

Usage

genVecQMC(p, d, bt = rep(1, d), gm = c(1, (4/5)^(0:(d - 2))))

Arguments

p number of samples to use in the quasi-Monte Carlo procedure.

d Dimension of the multivariate integral to estimate.

bt Tuning parameter for finding the vector. See D. Nuyens and R. Cools (2004) for
more details.

gm Tuning parameter for finding the vector. See D. Nuyens and R. Cools (2004) for
more details.

Details

The function computes a generating vector for efficient multivariate integral estimation based on D.
Nuyens and R. Cools (2004). If p is not a prime, the nearest smaller prime is used instead.

Value

primeP, the highest prime number smaller than p and genVec, a d-dimensional generating vector
defining an efficient lattice rule for primeP samples.

References

Nuyens, D. and R. Cools (2004). Fast component-by-component construction, a reprise for different
kernels. In Monte Carlo and Quasi-Monte Carlo Methods 2004, H. Niederreiter and D. Talay, eds.
Springer: Berlin, 373-87.

Examples

#Define the number of sample.
p <- 500

#Choose a dimension
d <- 300

#Compute the generating vector
latticeRule <- genVecQMC(p,d)

print(latticeRule$primeP)

10 mvtNormQuasiMonteCarlo

print(latticeRule$genVec)

mvtNormQuasiMonteCarlo

Multivariate normal distribution function

Description

Estimate the multivariate distribution function with quasi-Monte Carlo method.

Usage

mvtNormQuasiMonteCarlo(p, upperBound, cov, genVec, ...)

Arguments

p Number of samples used for quasi-Monte Carlo estimation. Must be a prime
number.

upperBound Vector of probabilities, i.e., the upper bound of the integral.

cov Covariance matrix of the multivariate normal distribution. Must be positive
semi-definite. WARNING: for performance in high-dimensions, no check is
performed on the matrix. It is the user responsibility to ensure that the matrix is
positive semi-definite.

genVec Generating vector for the quasi-Monte Carlo procedure. Can be computed using
genVecQMC.

... Additional arguments passed to Cpp routine.

Details

The function uses a quasi-Monte Carlo procedure based on randomly shifted lattice rules to estimate
the distribution function a multivariate normal distribution as described in Genz and Bretz (2009)
on page 50.

Value

A named vector with components estimate estimate of the distribution function along error, 3
times the empirical Monte Carlo standard error over the nrep replications.

References

Genz, A. and Bretz, F. (2009). Computations of Multivariate Normal and t Probabilities, volume
105. Springer: Dordrecht.

Genz, A. (2013). QSILATMVNV http://www.math.wsu.edu/faculty/genz/software/software.
html

http://www.math.wsu.edu/faculty/genz/software/software.html
http://www.math.wsu.edu/faculty/genz/software/software.html

mvTProbQuasiMonteCarlo 11

Examples

#Define locations
loc <- expand.grid(1:4, 1:4)
ref <- sample.int(16, 1)

#Compute variogram matrix
variogramMatrix <- ((sqrt((outer(loc[,1],loc[,1],"-"))^2 +
(outer(loc[,2],loc[,2],"-"))^2)) / 2)^(1.5)

#Define an upper boud
upperBound <- variogramMatrix[-ref,ref]

#Compute covariance matrix
cov <- (variogramMatrix[-ref,ref]%*%t(matrix(1, (nrow(loc) - 1), 1)) +
t(variogramMatrix[ref,-ref]%*%t(matrix(1, (nrow(loc) - 1), 1))) -
variogramMatrix[-ref,-ref])

#Compute generating vector
p <- 499
latticeRule <- genVecQMC(p, (nrow(loc) - 1))

#Estimate the multivariate distribution function
mvtNormQuasiMonteCarlo(latticeRule$primeP, upperBound, cov, latticeRule$genVec)

mvTProbQuasiMonteCarlo

Multivariate t distribution function

Description

Estimate the multivariate t distribution function with quasi-Monte Carlo method.

Usage

mvTProbQuasiMonteCarlo(p, upperBound, cov, nu, genVec, ...)

Arguments

p Number of samples used for quasi-Monte Carlo estimation. Must be a prime
number.

upperBound Vector of probabilities, i.e., the upper bound of the integral.
cov Covariance matrix of the multivariate normal distribution. Must be positive

semi-definite. WARNING: for performance in high-dimensions, no check is
done to ensure positive-definiteness of the covariance matrix. It is the user re-
sponsibility to ensure that this property is verified.

nu Degrees of freedom of the t distribution.
genVec Generating vector for the quasi-Monte Carlo procedure. Can be computed using

genVecQMC.
... Additional arguments passed to Cpp routine.

12 mvTProbQuasiMonteCarlo

Details

The function uses a quasi-Monte Carlo procedure based on randomly shifted lattice rules to estimate
the distribution function a multivariate normal distribution as described in Genz and Bretz (2009)
on page 50.

For compatibility reasons, the function handles the univariate case, which is passed on to pt.

Value

A named vector with components estimate estimate of the distribution function along error, 3
times the empirical Monte Carlo standard error over the nrep replications.

Author(s)

Raphael de Fondeville

References

Genz, A. and Bretz, F. (2009). Computations of Multivariate Normal and t Probabilities, volume
105. Springer: Dordrecht.

Genz, A. (2013). QSILATMVTV http://www.math.wsu.edu/faculty/genz/software/software.
html

Examples

#Define locations
loc <- expand.grid(1:4, 1:4)
ref <- sample.int(16, 1)

#Define degrees of freedom
nu <- 3

#Compute variogram matrix
variogramMatrix <- ((sqrt((outer(loc[,1],loc[,1],"-"))^2 +
(outer(loc[,2],loc[,2],"-"))^2)) / 2)^(1.5)

#Define an upper bound
upperBound <- variogramMatrix[-ref,ref]

#Compute covariance matrix
cov <- (variogramMatrix[-ref,ref]%*%t(matrix(1, (nrow(loc) - 1), 1)) +
t(variogramMatrix[ref,-ref]%*%t(matrix(1, (nrow(loc) - 1), 1))) -
variogramMatrix[-ref,-ref])

#Compute generating vector
p <- 499
latticeRule <- genVecQMC(p, (nrow(loc) - 1))

#Estimate the multivariate distribution function
mvTProbQuasiMonteCarlo(latticeRule$primeP, upperBound, cov, nu, latticeRule$genVec)

http://www.math.wsu.edu/faculty/genz/software/software.html
http://www.math.wsu.edu/faculty/genz/software/software.html

rExtremalStudentParetoProcess 13

rExtremalStudentParetoProcess

Simulation of extremal Student generalized Pareto vectors

Description

Simulation of Pareto processes associated to the max functional. The algorithm is described in
section 4 of Thibaud and Opitz (2015). The Cholesky decomposition of the matrix Sigma leads to
samples on the unit sphere with respect to the Mahalanobis distance. An accept-reject algorithm is
then used to simulate samples from the Pareto process. If normalize = TRUE, the vector is scaled
by the exponent measure κ so that the maximum of the sample is greater than κ.

Usage

rExtremalStudentParetoProcess(
n,
Sigma,
nu,
normalize = FALSE,
matchol = NULL,
trunc = TRUE

)

Arguments

n sample size

Sigma a d by d correlation matrix

nu degrees of freedom parameter

normalize logical; should unit Pareto samples above κ be returned?

matchol Cholesky matrix A such that AA⊤ = Σ. Corresponds to t(chol(Sigma)).
Default to NULL, in which case the Cholesky root is computed within the func-
tion.

trunc logical; should negative components be truncated at zero? Default to TRUE.

Value

an n by d matrix of samples, with attributes "accept.rate" indicating the fraction of samples
accepted.

Note

If ν > 2, an accept-reject algorithm using simulations from the angular measure on the l1 is at least
twice as efficient. The relative efficiency of the latter is much larger for larger ν. This algorithm
should therefore not be used in high dimensions as its acceptance rate is several orders of magnitude
smaller than that implemented in rparp.

14 scoreEstimation

Author(s)

Emeric Thibaud, Leo Belzile

References

Thibaud, E. and T. Opitz (2015). Efficient inference and simulation for elliptical Pareto processes.
Biometrika, 102(4), 855-870.

See Also

rparp

Examples

loc <- expand.grid(1:4, 1:4)
Sigma <- exp(-as.matrix(dist(loc))^1.5)
rExtremalStudentParetoProcess(100, Sigma, nu = 2)

scoreEstimation Gradient score function for the Brown–Resnick model.

Description

Compute the peaks-over-threshold gradient score function for the Brown–Resnick model.

Usage

scoreEstimation(
obs,
loc,
vario,
weightFun = NULL,
dWeightFun = NULL,
nCores = 1L,
cl = NULL,
...

)

Arguments

obs List of vectors exceeding an R-threshold, see de Fondeville and Davison (2018)
for more details.

loc Matrix of coordinates as given by expand.grid().

vario Semi-variogram function taking a vector of coordinates as input.

weightFun Function of weights.

dWeightFun Partial derivative function of weightFun.

scoreEstimation 15

nCores Number of cores used for the computation

cl Cluster instance as created by makeCluster of the parallel package.

... Parameters for weightFun and dWeightFun.

Details

The function computes the gradient score based on the representation developed by Wadsworth et
al. (2014). Margins must have been standardized. The weighting function must be differentiable
and verify some properties for consistency, see de Fondeville and Davison (2018) for more details.

Value

Evaluation of the gradient score function for the set of observations obs and semi-variogram vario.

Author(s)

Raphael de Fondeville

References

de Fondeville, R. and Davison A. (2018). High-dimensional peaks-over-threshold inference. Biometrika,
105(3), 575-592.

Wadsworth, J. L. and J. A. Tawn (2014). Efficient inference for spatial extreme value processes
associated to log-Gaussian random functions. Biometrika, 101(1), 1-15.

Examples

#Define variogram function
vario <- function(h){

1 / 2 * norm(h,type = "2")^1.5
}

#Define locations
loc <- expand.grid(1:4, 1:4)

#Simulate data
obs <- simulPareto(1000, loc, vario)

#Evaluate risk functional
sums <- sapply(obs, sum)

#Define weighting function
weightFun <- function(x, u){
x * (1 - exp(-(sum(x / u) - 1)))

}

#Define partial derivative of weighting function
dWeightFun <- function(x, u){
(1 - exp(-(sum(x / u) - 1))) + (x / u) * exp(- (sum(x / u) - 1))
}

16 simulBrownResnick

#Select exceedances
threshold <- quantile(sums, 0.9)
exceedances <- obs[sums > threshold]

#Evaluate gradient score function
scoreEstimation(exceedances, loc, vario, weightFun = weightFun, dWeightFun, u = threshold)

simulBrownResnick Simulation of Brown–Resnick random vectors

Description

simulBrownResnick provides n replicates of a Brown–Resnick max-stable process with semi-
variogram vario at locations loc.

Usage

simulBrownResnick(n, loc, vario, nCores = 1, cl = NULL)

Arguments

n Number of replicates desired.

loc Matrix of coordinates as given by expand.grid().

vario Semi-variogram function.

nCores Number of cores needed for the computation

cl Cluster instance as created by makeCluster of the parallel package. Make
sure the random number generator has been properly initialized with clusterSetRNGStream().

Details

The algorithm used here is based on the spectral representation of the Brown–Resnick model as
described in Dombry et al. (2015). It provides n exact simulations on the unit Frechet scale and
requires, in average, for each max-stable vector, the simulation of d Pareto processes, where d is the
number of locations.

Value

List of n random vectors drawn from a max-stable Brown–Resnick process with semi-variogram
vario at location loc.

References

Dombry, C., Engelke, S. and M. Oesting. Exact simulation of max-stable processes. Biometrika,
103(2), 303-317.

simulPareto 17

Examples

#Define semi-variogram function
vario <- function(h){

1 / 2 * norm(h,type = "2")^1.5
}

#Define locations
loc <- expand.grid(1:4, 1:4)

#Simulate data
obs <- simulBrownResnick(10, loc, vario)

simulPareto Simulate Pareto random vectors

Description

simulPareto provides n replicates of the multivariate Pareto distribution associated to log-Gaussian
random function with semi-variogram vario.

Usage

simulPareto(n, loc, vario, nCores = 1, cl = NULL)

Arguments

n Number of replicates desired.

loc Matrix of coordinates as given by expand.grid().

vario Semi-variogram function.

nCores Number of cores used for the computation

cl Cluster instance as created by makeCluster of the parallel package. Make
sure the random number generator has been properly initialized with clusterSetRNGStream().

Details

The algorithm used here is based on the spectral representation of the Brown–Resnick model as
described in Dombry et al. (2015). It provides n replicates conditioned that mean(x) > 1 on the unit
Frechet scale.

Value

List of n random vectors drawn from a multivariate Pareto distribution with semi-variogram vario.

References

Dombry, C., Engelke, S. and M. Oesting. Exact simulation of max-stable processes. Biometrika,
103(2), 303-317.

18 spectralLikelihood

Examples

#Define variogram function
vario <- function(h){

1 / 2 * norm(h,type = "2")^1.5
}

#Define locations
loc <- expand.grid(1:4, 1:4)

#Simulate data
obs <- simulPareto(100, loc, vario)

spectralLikelihood Spectral log-likelihood function

Description

Compute the negative spectral log-likelihood function for Brown–Resnick model with peaks-over-
threshold.

Usage

spectralLikelihood(obs, loc, vario, nCores = 1L, cl = NULL)

Arguments

obs List of observations vectors for which sum(x) exceeds a high threshold.

loc Matrix of coordinates as given by expand.grid().

vario Semi-variogram function taking a vector of coordinates as input.

nCores Number of cores used for the computation

cl Cluster instance as created by makeCluster of the parallel package.

Details

The function compute the negative log-likelihood function based on the spectral representation
developed by Engelke et al. (2015). This simplified expression is obtained by conditioning on the
event ‘sum(x) exceeds a high threshold u > 1’. Margins must have been standardized.

Value

Negative spectral log-likelihood function evaluated at the set of observations obs with semi-variogram
vario.

References

Engelke, S. et al. (2015). Estimation of Huesler-Reiss distributions and Brown-Resnick processes.
Journal of the Royal Statistical Society: Series B, 77(1), 239-265

spectralLikelihood 19

Examples

#Define semi-variogram function
vario <- function(h){

1 / 2 * norm(h,type = "2")^1.5
}

#Define locations
loc <- expand.grid(1:4, 1:4)

#Simulate data
obs <- simulPareto(1000, loc, vario)

#Evaluate risk functional
sums <- sapply(obs, sum)

#Select exceedances
exceedances <- obs[sums > quantile(sums, 0.9)]

#Evaluate the spectral function
spectralLikelihood(exceedances, loc, vario)

Index

censoredLikelihood
(censoredLikelihoodBR), 4

censoredLikelihoodBR, 4
censoredLikelihoodXS, 6

genVecQMC, 9

mvPot (mvPot-package), 2
mvPot-package, 2
mvtNormQuasiMonteCarlo, 10
mvTProbQuasiMonteCarlo, 11

rExtremalStudentParetoProcess, 13
rparp, 13, 14

scoreEstimation, 14
simulBrownResnick, 16
simulPareto, 17
spectralLikelihood, 18

20

	mvPot-package
	censoredLikelihoodBR
	censoredLikelihoodXS
	genVecQMC
	mvtNormQuasiMonteCarlo
	mvTProbQuasiMonteCarlo
	rExtremalStudentParetoProcess
	scoreEstimation
	simulBrownResnick
	simulPareto
	spectralLikelihood
	Index

